首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67429篇
  免费   5400篇
  国内免费   9439篇
化学   54076篇
晶体学   734篇
力学   1304篇
综合类   947篇
数学   11433篇
物理学   13774篇
  2023年   574篇
  2022年   955篇
  2021年   2061篇
  2020年   1937篇
  2019年   1809篇
  2018年   1608篇
  2017年   1730篇
  2016年   2387篇
  2015年   2294篇
  2014年   3023篇
  2013年   5158篇
  2012年   3492篇
  2011年   3871篇
  2010年   3354篇
  2009年   4188篇
  2008年   4282篇
  2007年   4569篇
  2006年   3913篇
  2005年   3155篇
  2004年   3003篇
  2003年   2801篇
  2002年   4701篇
  2001年   1838篇
  2000年   1442篇
  1999年   1195篇
  1998年   1115篇
  1997年   980篇
  1996年   972篇
  1995年   901篇
  1994年   853篇
  1993年   828篇
  1992年   805篇
  1991年   536篇
  1990年   433篇
  1989年   339篇
  1988年   396篇
  1987年   281篇
  1986年   274篇
  1985年   409篇
  1984年   325篇
  1983年   195篇
  1982年   375篇
  1981年   524篇
  1980年   450篇
  1979年   507篇
  1978年   393篇
  1977年   304篇
  1976年   266篇
  1974年   81篇
  1973年   164篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
61.
Magnetically retrieval CuFe2O4@MIL-101(Cr) metal–organic framework was successfully prepared from easily available starting materials and characterized using various spectroscopic and analytical techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, transmission electron microscopy, elemental mapping, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, vibrating sample magnetometer, and inductively coupled plasma optical emission spectroscopy. The catalyst was then used in the synthesis of benzodiazepines containing a triazole moiety in water. The advantages of this protocol include high yields, reusability of the catalyst, and gram-scale synthesis.  相似文献   
62.
The synthesis and characterizations for a series of dinuclear gold (I)-di-NHC complexes, 1–8 through the trans-metalation method of their respective silver (I)-di-NHC complexes, i–viii are reported (where NHC = N-heterocyclic carbene). The successful complexation of a series of unusual non-symmetrical and symmetrical di-NHC ligands, 3,3'-(ethane-1,2-diyl)-1-alkylbenzimidazolium-1'-butylbenzimidazolium (with alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, benzyl) with the gold (I) ions are suggested by elemental analysis, Fourier transform-infrared, 1H- and 13C-NMR data. The 13C-NMR spectra of 1–8 show a singlet sharp peak in the range of 190.00–192.00 ppm, indicating the presence of a carbene carbon that bonded to the gold (I) ion. From single crystal X-ray diffraction data, the structure of complex 6 with the formula of [di-NHC-Au (I)]2·2PF6 is obtained [where NHC = 3,3'-(ethane-1,2-diyl)-1-hexylbenzimidazolium-1'-butylbenzimidazolium]. The photophysical study in solid state of 6 displays an intense photoluminescence with a strong emission maxima, λem = 480 nm, upon excitation at 340 nm at room temperature. Interestingly, the emission maximum at 77 K shows a structural character with a strong peak at 410 nm, a medium at 433 nm and a weak at 387 nm, accompanied by a tail band to about 500 nm.  相似文献   
63.
A zinc coordination polymer derived from pyridine-2,6-dicarboxylate (PDC), {[Zn2(PDC)2]}n, was successfully prepared via conventional, sonication and microwave-irradiation methods. The composition and characteristics of the obtained coordination polymers (CPs) were investigated by elemental analysis, TGA/DTA, X-ray diffraction and spectroscopic techniques. The so obtained CPs were heat-treated in the air at 600 °C for 2 h to produce ZnO of nanosized particles (NPs). It is of interest to note that the synthesis approach of the precursor greatly affects both the nanoparticle size and the structure of the resulting ZnO NPs. Moreover, the smallest particle size was associated with the sample derived from the ultrasonically prepared precursor. TEM analysis revealed that all samples have sphere-like morphologies. Structural analysis of the prepared ZnO samples was conducted and compared using Rietveld analysis of their PXRD patterns. Optical band gap calculations based on analysis of the UV–vis spectra of ZnO samples using Tauc's power law were achieved. The highest band gap of 3.63 eV was observed for ZnO sample obtained from the ultrasonically prepared precursor. Furthermore, the photocatalytic activity of ZnO NPs for the removal of Eosin Y color was monitored. The highest removal efficiency was recorded for ZnO originated from the ultrasonically synthesized precursor. Enhancement of removal efficiency that reached 98% was attained in only a period of 8 min. Its recycling test showed that it can be reused without structural changes over four cycling experiments.  相似文献   
64.
Immobilization of metal ions onto inorganic supports has very interesting biological, industrial, and catalysis applications. In this study, CoFe2O4@SiO2@PUF@Zn(OAc)2 nanostructure was successfully fabricated by immobilization of zinc acetate on the surface of poly(urea-formaldehyde) supported on magnetic CoFe2O4@SiO2 nanoparticles through a layer-by-layer assembly. The structure of hybrid nanoparticles was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy, and transmission electron microscopy. Zinc-poly(urea-formaldehyde) supported on magnetic nanoparticles (MNPs@SiO2@PUF@Zn) was successfully used for the synthesis of spirooxindolopyran and spirooxindoloxanthene derivatives in aqueous medium as an environmentally benign condition. High yields, short reaction times, green solvent, reusability without significant reduction in catalytic activity, and simple separation of the catalyst using an external magnet along with environmental compatibility are some benefits of this procedure.  相似文献   
65.
Just as natural saponins transform into aglycones, secondary glycosides and their derivatives using biotransformation technology, steroidal saponins may also undergo similar transformation after stir-frying. The purpose of this study was to elucidate the variations and the reasons for these variations in the contents of steroidal saponins in Fructus Tribuli (FT) during a stir-frying treatment. Stir-fried FT was processed in different time–temperature conditions. An UHPLC–MS/MS method was established and fully validated for quantitative analysis. In addition, the simulation processing products of tribuluside A, terrestroside B, terrestrosin K, terrestrosin D and 25R-tribulosin were determined by qualitative analysis using UHPLC–Q-TOF–MS. The established UHPLC–MS/MS method provides a rapid, flexible, and reliable method for the quality assessment of FT. The present study revealed that furostanol saponins with a C22-OH group could transform into corresponding furostanol saponins with a C-20–C-22 double bond (FSDB) via dehydroxylation. Additionally, FSDB could be successively converted into its secondary glycosides via a deglycosylation reaction. The transformation of spirostanol saponins into corresponding aglycones via deglycosylation led to a decrease in spirostanol saponins and an increase in aglycones. The results of this research provided scientific evidence of variation and structural transformation among steroidal saponins. These findings might be helpful for elucidating the processing mechanism of FT.  相似文献   
66.
A range of conventional, i.e. maceration, percolation, ultrasonic assisted, Soxhlet and Soxtec extraction (STE), to advanced extraction techniques of accelerated solvent extraction (ASE) was utilized for the first time in order to optimize the extract yield and recovery of phenolics—gallic acid (GA), rutin (RT) and quercetin (QT)—quantified via ultra-high performance liquid chromatography with diode array detector (UHPLC–DAD). The effect of solvents (n-hexane, dichloromethane and methanol) and temperature (60, 80 and 100°C) upon extraction yield, phenolic content and antioxidant activity (DPPH, ABTS and DPPH) was studied, and the method was validated in commercial food samples from Saudi Arabia, China and India. A high extract yield with percentage recovery was observed for STE (1221.10 mg/5 g; 24.42%) and ASE techniques (91.50 mg/1 g; 9.15%) in methanol at 100°C. UHPLC–DAD showed retention times (min) of 0.67, 1.93 and 1.90 for GA, RT and QT, respectively in the shortest runtime of 3 min. The yield for phenolics was higher for STE/ASE (ppm): 15.27/15.29 (GA), 85.24/37.56 (RT) and 52.20/33.40 (QT), respectively. In terms of antioxidant activities, low IC50 values (μg/ml) of 1.09/1.18 (DPPH), 2.11/5.32 (ABTS) and 4.35/7.88 (phenazine methosulfate–nicotinamide adenine dinucleotide) were observed for STE and ASE, respectively. Multivariate analysis for STE showed a significant (P = 0.000) correlation for extraction type vs. extract yield and phenolics content; however, there was no significance for antioxidant activities vs. extraction type. ASE showed a positive correlation for solvent vs. extraction yield, phenolics and antioxidant activity; however, there was no correlation for extraction yield and DPPH activity. Principal component analysis for STE showed a major variability (52.02%) for extraction yield and phenolics in PC1 followed by PC2 (38.30%) for antioxidant activities. For ASE, PC1 (48.68%) showed a positive correlation for solvent vs. extraction yield and phenolics while PC2 (33.12%) showed a positive correlation for temperature and antioxidant activities. STE and ASE were the optimized extraction techniques for the garlic food sample while a significant effect of solvent and temperature was observed upon extraction yield, phenolics and antioxidant activity.  相似文献   
67.
Zinc–cobalt double-metal sulfides (ZCS) as Faradic electrode materials with high energy density have great potential for supercapacitors, but their poor transfer efficiency for electrons and ions hinders their electrochemical response. Herein, ZnCo2(CO3)1.5(OH)3@ZCS microflower hybrid arrays consisting of thin nanolayer petals were anchored on three-dimensional graphene (ZnCo2(CO3)1.5(OH)3@ZCS/3DG) by a simple hydrothermal method and additional ion-exchange process. A ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode delivered high capacitance (2228 F g−1 at 1 A g−1) and long cycling life (85.7 % retention after 17 000 cycles), which are ascribed to the multicomponent structural design. The 3DG conductive substrate improves the electron-transfer dynamics of the electrode material. Meanwhile, the microflowers consisting of thin nanolayer petals could not only provide many active sites for ions to improve the capacitance, but also alleviate the volume expansion to ensure the structural stability. Furthermore, an all-solid-state asymmetric supercapacitor based on a ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode achieved a high energy density of 27 W h kg−1 at 528.3 W kg−1 and exhibits exceptional cyclic stability for 23 000 cycles. Its ability to light a blue LED for 9 min verified the feasibility of its application for energy storage devices.  相似文献   
68.
Bryostatins are a class of naturally occurring macrocyclic lactones with a unique fast developing portfolio of clinical applications, including treatment of AIDS, Alzheimer's disease, and cancer. This comprehensive account summarizes the recent progress (2014–present) in the development of bryostatins, including their total synthesis and biomedical applications. An emphasis is placed on the discussion of bryostatin 1 , the most-studied analogue to date. This review highlights the synthetic and biological challenges of bryostatins and provides an outlook on their future development.  相似文献   
69.
In the field of organic synthesis, the advent of flow chemistry and flow microreactor technology represented a tremendous novelty in the way of thinking and performing chemical reactions, opening the doors to poorly explored or even impossible transformations using batch methods. In this Concept article, we would like to highlight the impact of flow chemistry for exploiting highly reactive organometallic reagents, and how, alongside the well-known advantages concerning safety, scalability, and productivity, flow chemistry makes possible processes that are impossible to control by using the traditional batch approach.  相似文献   
70.
陈云  蔡厚道 《人工晶体学报》2020,49(12):2287-2291
单层二硫化钼(MoS2)是一种具有优异光电性能的半导体材料,在太阳能能量转换中表现出很大的应用潜力。本文基于AMPS模拟软件,对单层n型MoS2/p型c-Si异质结太阳电池进行了数值模拟与分析。通过模拟优化,n型MoS2的电子亲和能为3.75 eV、掺杂浓度为1018 cm-3,p型c-Si的掺杂浓度为1017 cm-3时,太阳电池能够取得最高22.1%的转换效率。最后模拟了n型MoS2/p型c-Si异质结界面处的界面态对太阳电池性能的影响,发现界面态密度超过1011 cm-2·eV-1时会严重影响太阳电池的光伏性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号